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Sp-Separation Axioms 
Alias B. Khalaf, Hardi A. Shareef 

Abstract— In this paper Sp-open sets are used to define some new types of separation axioms in topological spaces. The implications of 

these separation axioms among themselves with some other separation axioms are obtained. Also their basic properties and 

characterizations are investigated.  

Index Terms— Sp-open sets, pre separation axioms, semi-separation axioms.  

——————————      —————————— 

1 INTRODUCTION                                                                     

he notion of semi-open sets which was introduced by Lev-

ine in 1963 [5] is one of the well-known notion of general-

ized open sets. Several types of generalized open sets were 

introduced such as preopen sets [7] which was introduced by 

Mashhour et al in 1982. The notion of Sp-open sets [9]  intro-

duced by Shareef in 2007. In [6] Maheshwari and Prasad have 

defined the concept of semi-Ti, (i=0, 1, 2) spaces also in [3] Kar 

and Bhattacharyya defined new weak types of separation axi-

oms via preopen sets called pre-Ti spaces for i=0, 1, 2  and in 

[4] Khalaf introduced strongly semi-separation axioms by us-

ing special types of semi open sets.  

In this paper we define new types of separation axioms called 
Sp-Ti spaces which are stronger than semi-Ti spaces and weak-
er than strongly semi-Ti spaces (i=0,1,2). 

2 PRELIMINARIES  

Throughout this paper  and  will always denote topological 

spaces and  will denote a function from a space  into 

a space . If  is a subset of  , then the closure and interior of  

in  are denoted by cl( ) and int( ) respectively.  while Spcl( ) 

and Spint( ) denote the Sp-closure and Sp-interior of  in  re-

spectively. 

 

Definitions 2.1:  A subset A of a space X is called: 

1.  semi-open [5], if  ⊆ cl(int( )), 

2.  preopen [7], if  ⊆ int(cl( )). 

3.  regular closed [11], if  = cl(int( )). 

4.   -semi-open [8], if for each , there exists a semi-open 

set  such that cl( ) . 

5.  Sp-open [9], if  is semi-open and for each , there exists 

a preclosed set  such that       . 

 

   The complement of a semi-open, preopen and Sp-open set is 

called semi-closed, preclosed and Sp-closed set respectively.   

  The family of all semi-open, preopen and Sp-open sets in a 

space  is denoted by SO( ), PO( ) and SpO( ) respectively, 

while SC( ), PC( ) and SpC( ) denote the family of semi-

closed, preclosed and Sp-closed sets in a space  respectively.  

 

 

Definition 2.2: A space  is said to be:  

1)   Semi-T0 [6],  (resp., pre-T0 [3], strongly semi-T0 [4] and  

T0 [11]) space if for each two distinct points  and  

in , there exists a semi-open (resp.,  preopen, -

semi-open and open) set containing one of them but 

does not contain the other. 

2)   Semi-T1 [6],  (resp., pre-T1 [3], strongly semi-T1 [4] and  

T1 [11]) space if for each two distinct points  and  

in , there exist semi-open (resp.,  preopen,  -semi-

open and open) sets  and  containing  and  re-

spectively, such that  and  

3)     semi-T2 [6] (resp.,  pre-T2 [3], strongly semi-T2 [4] and 

T2 [11]) space if for each two distinct points  and  

in , there exist two disjoint semi-open (resp.,  preo-

pen, -semi-open and open) sets  and  containing 

 and  respectively. 

 

Definition 2.3: [2] A function  is said to be s-

continuous or (strongly semi-continuous) if the inverse image 

of each semi-open set in  is an open set in . 

 

The following definitions and results are from [9]. 

Definition 2.4: Let  be a space and let , then a subset  

of  is said to be  Sp-neighborhood of  if there exists Sp-open 

set  in  such that . 

 

Lemma 2.5: If a space  is preT1-space, then SO( ) = SpO( ). 

 

T 
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Lemma 2.6: Every -semi-open set of  is Sp-open set. 

 

Theorem 2.7: Let  be a space and . If , then 

Spcl( )⊆Spcl( ). 

 

Lemma 2.8: The set  is Sp-open in the space  if and only if 

for each , there exists an             Sp-open set  such that 

. 

 

Lemma 2.9: For any subset  of a space , Spcl ( )=  SpD ( ), 

where SpD( ) stands for the set of all Sp-limit points of  in . 

 

Theorem 2.10: Let  be a regular closed subset of .  If  is an 

Sp-open subset of , then  is Sp-open in . 

 

Theorem 2.11: Let f:   be a homeomorphism. If   SpO( ), 

then f ( )  SpO( ). 

 

Theorem 2.12: A function f:    is Sp-continuous if and only 

if for every open subset  of , ( ) is Sp-open in . 

 

Theorem 2.13: Let f:   be continuous and open function, 

then ( )  SpO( ) for any    SpO( ). 

 

Theorem 2.14: [5] Let  and  be two spaces and  

be the product space. If SO( ) and SO( ), then 

SO( ). 

 

Theorem 2.15: [1] For any spaces  and , if  and , 

then (   . 

 

3 SP-SEPARATION AXIOMS  

Definition 3.1: A space  is said to be: 

1)   Sp-To space if for each pair of distinct points in , there 

exists an Sp-open set in  containing one of them and 

not the other. 

2)   Sp-T1 space if for each pair of distinct points  and  in 

, there exists two Sp-open sets  and  in  con-

taining  and  respectively such that  and 

. 

3)    Sp-T2 space if for each pair of distinct points  and  

in , there exists two disjoint Sp-open sets  and  in 

 such that  and . 

 

Remark 3.2: From the above definition and Definition 2.2, it is 

clear that every Sp-Ti space is semi-Ti , for i=0, 1, 2. But the con-

verse is not true in general as it is shown by the following ex-

amples:  

 

Example 3.3: Let  and . 

Then SO( ) =  and SpO( ) =  . This implies that  is 

semi-T0 space but not Sp-T0 . 

 

Example 3.4: Let  and . 

Then 

SO )=

 and SpO ) = . Hence,  the space  is semi-

T1 but not Sp-T1 also  is semi-T2 but not Sp-T2. 

 

Remark 3.5: It is clear that every Sp-T2 space is Sp-T1 space and 

every Sp-T1 space if Sp-T0 space but the converse is not true in 

general as it is shown in the following examples.   

 

Example 3.6: Let  and . 

Hence 

 SO( ) , and PC( ) 

 also 

  SpO( ) . Then  is Sp-T0, but not Sp-T1 . 

 

Example 3.7: Let  be any infinite set equipped with the co-

finite topology. Then  is T1-space, so by Lemma 2.5, SO( = 

SpO( ) and every infinite subset of   is semi-open set. Hence 

 is both semi-T1 and Sp-T1. But it is obvious that  is not Sp-T2 

space.   

 

Lemma 3.8: Every strongly semi-Ti space is Sp-Ti space, for i=0, 

1, 2. 

Proof: Let  be strongly semi-T0 space and let  such 

that . Then there exists a  -semi-open set  containing 

one of them but not the other and since by Lemma 2.6,  is             

Sp-open set containing one of them but not the other. This im-

plies that  is Sp-T0.  

Similarly we can prove for i=1 and 2. 
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    The convers of Lemma 3.8 is not true in general as it is 

shown in the example below: 

Example 3.9: Let  and , then 

 SO( ) = , SO( ) =  and 

SpO( ) = . Therefor,   is Sp-T0 but not strong-

ly semi-T0 space.             

 

Proposition 3.10: If a space  is Sp-T1 , then it is pre-T1 . 

Proof: Let  be an Sp-T1 space and let  such that , 

so there exist two Sp-open sets  and  such that  , 

and ,  . This implies that by Definition 2.1, 

there exist two preclosed sets  such that  

and . Hence,   and  are preopen sets such 

that  ,  and  ,  . Therefore, by 

Definition 2.2,   is pre-T1 .  

  

   The converse of Proposition 3.8  is not true in general as it is 

seen in the example below: 

Examples 3.11: Let  and 

. Then 

 PO( ) = 

 

and SpO( ) = .  It can be 

checked that   is pre-T1  but not Sp-T1. 

 

   The property of a space being Sp-T0 space is not hereditary 

property as it is shown in the following example : 

Example 3.12: Let  and , 

then  is Sp-T0 space and let  and , then 

SpO( )= . The subspace  is not Sp-T0 subspace. 

 

Proposition 3.13: The property of a space being Sp-Ti (for 

i=0,1,2) is a topological property. 

Proof: Let  be a homeomorphism and let  be Sp-T0. 

Suppose that  such that . Since  is onto so, 

there exist  such that  and  and 

. Since  is Sp-T0,  so there exists an Sp-open set  of  

containing one of the points  and not the other. Since  is 

homeomorphism, so by Theorem 2.11,  is also Sp-open in 

 and containing one of the points  and not the other. 

Thus  is also Sp-T0 space. 

The proof for the space being Sp-T1 and Sp-T2 is similar. 

 

Theorem 3.14: A space  is Sp-T0 if and only if the Sp-closure of 

distinct points are distinct. 

Proof: Let  be Sp-T0 and  such that . Since  

and  is Sp-T0 , so there exists an Sp-open set  contains one of 

them, say , and not the other. Then  is Sp-closed set in  

contains  but not , but Spcl( )  and since  

implies that  Spcl( ), so Spcl( )  Spcl( ). 

Conversely: To show that  is Sp-T0 space,  let  such 

that  . So by hypothesis,  Spcl( )  Spcl( ), then there 

exist at least one point  of  which belongs to one of them, 

say Spcl( ) and does not belongs to Spcl( ). If  Spcl( ), 

then  Spcl( ) . This implies that, by Theorem 2.7, 

Spcl( ) Spcl( ) which is a contradiction to the fact that  

Spcl( ) but  Spcl( ), so  Spcl( ). Hence,   

\Spcl( ) and \Spcl( ) is Sp-open set containing  but not  

. Thus,  is Sp-T0 space. 

 

Theorem 3.15: A space  is Sp-T1 space if and only if every sin-

gleton subset of  is Sp-closed . 

Proof: Let  be Sp-T1 space and . Let  implies 

that  and since  is Sp-T1 space so there exist two Sp-open 

sets  and  such that   and ,  . This 

implies that ,  so by Lemma 2.8,  is an Sp-

open set . Hence,  is Sp-closed .  

Conversely: Let  such that  implies that  

are two Sp-closed sets in . Then  and  are two Sp-

open sets and  contains  but not  also  contains  

but not  this implies that  is Sp-T1 space. 

 

Theorem 3.16: For any space  the following statements are 

equivalent: 

1.   is Sp-T1 space. 

2.  Each subset of  is the intersection of all Sp-open sets 

containing it. 

3.  The intersection of all Sp-open sets containing the point 

 is the set . 

Proof: (1)  (2). Let  be Sp-T1 and . Then for each , 

there exists a set  such that  and by Theorem 

3.15, the set  is Sp-open for every . This implies that                                         

 so the intersection of all Sp-open sets 

containing  is  itself. 

(2) (3).  Let , then  so by (2), the intersection of 

all Sp-open sets containing  is  itself. Hence the intersec-

tion of all Sp-open sets containing  is .  

(3)  (1). Let  such that  implies that by (3), the 

intersection of all Sp-open sets containing  and  are  and 

 respectively, then for each  there exists an Sp-open set 



International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012                                                                                         4 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org  

 such that  and . Similarly for  there exists 

an Sp-open set  such that  and  this implies that 

 is Sp-T1 space. 

 

Theorem 3.17: A space  is Sp-T1 if and only if SpD( )  for 

each . 

Proof: Let  be Sp-T1 space and . If possible suppose that 

SpD( )  implies that there exists  SpD( ) and  

and since  is Sp-T1,  so there exists an Sp-open set  in  such 

that  and  implies that , then 

SpD( ) which is a contradiction. Thus SpD( )  for 

each . 

Conversely: Let SpD( )  for each , then by Lemma 

2.9, Spcl( )=  which is Sp-closed set in . This implies that 

each singleton set in  is Sp-closed. Thus by Theorem 3.15,  is 

an Sp-T1 space. 

 

Lemma 3.18: If every finite subset of a space  is Sp-closed , 

then  is Sp-T1 space. 

Proof: Let  such that . Then by hypothesis,  

and  are Sp-closed sets which implies that  and  

are Sp-open sets such that  and . Hence  is 

Sp-T1 space. 

 

Theorem 3.19: If  is Sp-T0 space, then  

Spint(Spcl( )) Spint(Spcl( ))  for each pair of distinct 

points  and  in . 

Proof: Let  be Sp-T0 and  such that . Then there 

exist an Sp-open set  containing one of the point, say , and 

not the other implies that  and , then  and 

 is Sp-closed . Now Spint( )  Spint(Spcl( ))  this 

implies that Spint(Spcl( )) , then 

Spint(Spcl( )). But Spint(Spcl( )), then 

Spcl( ) Spint(Spcl( )) this implies that 

Spint(Spcl( )) Spcl( ) Spint(Spcl( )). Therefore,   

Spint(Spcl( )) Spint(Spcl( )) . 

 

Theorem 3.20: If for each , there exists a regular closed 

set  containing  such that  is Sp-T0 subspace of , then the 

space  is Sp-T0. 

Proof: Let  be two distinct points in , then by hypothesis 

there exists regular closed sets  and   such that  , 

and   ,  are Sp-T0 subspaces. Now if  then the 

proof is complete but if  and since  is Sp-T0 subspace,  so 

there exists an Sp-open set  in  such that  and  

and since is regular closed set so by Theorem 2.10,  is an 

Sp-open set in containing  . Thus  is Sp-T0 . 

 

   Similar to Theorem 3.20, we can prove the following result.  

Theorem 3.21: If for each , there exists a regular closed 

set  containing  such that  is Sp-T1 subspace of , then the 

space  is Sp-T1. 

 

Theorem 3.22: For a space  the following statements are 

equivalent: 

1.  is Sp-T2 space. 

2.  If , then for each  there exists an Sp-

neighborhood  of  such that Spcl( ). 

3.  For each , Spcl( ):  is Sp-neighborhood of 

. 

Proof: (1)  (2). Let  be an Sp-T2 space and let , then for 

each  there exist two disjoint Sp-open sets  and  such 

that  and  . This implies that   , so by 

Definition 2.4,   is an Sp-neighborhood of  which is Sp-

closed set in  and   implies that  Spcl(  ). 

(2)  (1). Let  such that , then by hypothesis, 

there exists an Sp-neighborhood  of  such that  Spcl( ) 

implies that Spcl( ) and Spcl( ). But Spcl( )  is 

Sp-open set also since  is Sp-neighborhood of , then there 

exists an Sp-open set  of  such that  this implies 

that Spcl( )) . Hence  is Sp-T2 . 

(2)  (3). Let . If Spcl( ):  is Sp-neighborhood of 

, then there exists Spcl( ):  is Sp-neighborhood 

of  such that  so by (2),  there exists an Sp-

neighborhood  of  such that  Spcl( ) which is contradic-

tion to the fact that Spcl( ):  is Sp-neighborhood of . 

Thus Spcl( ):  is Sp-neighborhood of  

(3)  (2). Let  so by hypothesis, we have  Spcl( ):  is 

Sp-neighborhood of . Now if  , then   

Spcl( ):  is Sp-neighborhood of  and hence there 

exists an Sp-neighborhood  of  such that  Spcl( ). 

 

Lemma 3.23: Let  be a regular closed subset of the space, then 

any Sp-neighborhood of the point   in  is an  Sp-

neighborhood of  in  . 

Proof: Let  be any Sp-neighborhood of  this implies that 

by Definition 2.4, there exists an Sp-open set  in  such that 

. Since  is regular closed set in ,  so by Theorem 

2.10,  is an Sp-open set in  which implies that  is an Sp-

neighborhood of  in . 
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Lemma 3.24: Let Y be a regular closed subspace of the space X 

and A Y, then                             Spcl(A) Spcly(A).  

Proof: Let x Spcly(A) implies that there exists an Sp-open 

set U in Y containing x  such that           U A =  . Since Y 

is regular closed set in X then by Theorem 2.10, U is Sp-open 

set in X implies that x Spcl(A), so Spcl(A) Spcly(A). 

 

Theorem 3.25: If for each point  of a space  there exists a 

regular closed subset  containing  and  is Sp-T2 subspace of 

, then  is Sp-T2 space. 

Proof: Let , then by hypothesis, there exists a regular 

closed set  containing  and  is Sp-T2 subspace. Hence, by 

Theorem 3.22, we have  SpclA( ):  is Sp-neighborhood of  

in  and since  is regular closed set in ,  so by Lemma 

3.24,  Spcl( )  SpclA( ) and by Lemma 3.23,  is Sp-

neighborhood of  in , so Spcl( ):  is Sp-neighborhood of 

 in . Therefore by Theorem 3.22,   is Sp-T2 . 

 

Theorem 3.26: A space  is Sp-T2 if and only if for each pair of 

distinct points , there exists an Sp-clopen set  contain-

ing one of them but not the other. 

Proof: Let  be Sp-T2 space and  such that  implies 

that there exists two disjoint           Sp-open sets  and  such 

that  and . Now since  and  is Sp-open 

set implies that  and  is Sp-closed set, since  

is Sp-T2 space so for each  there exists an Sp-open set  

such that , then by Lemma 2.8,  is Sp-open 

set. Thus  is Sp-clopen set. 

Conversely: Let for each pair of distinct points , there 

exists an Sp-clopen set  containing  but not  implies that 

 is also Sp-open set and , since  so  

is Sp-T2 space. 

 

Theorem 3.27: A space  is Sp-T2 space if for any pair of dis-

tinct points , there exists an Sp-continuous function  of 

 into a T2-space  such that  

Proof: Let  and  be any two distinct points in . Then by 

hypothesis there exists an                     Sp-continuous function  

from  into a T2-space  such that . But 

 and since  is T2-space so there exists two dis-

joint open sets  and  such that  and  

implies that  and  and since  is Sp-

continuous function, so by Theorem 2.12,   are 

Sp-open sets and . This implies that  is 

Sp-T2 space. 

 

Theorem 3.28: For a space  the following statements are 

equivalent: 

1.  is Sp-T2 space. 

2.  The intersection of all Sp-clopen sets of each point in  

is singleton. 

3.  For a finite number of distinct points  ( ), 

there exists an Sp-open set  such that  

( ) are pairwise disjoint. 

Proof:  

(1) (2). Let  be Sp-T2 space and . To show  is Sp-

clopen and . If                   is Sp-clopen and 

 where . Then since  is Sp-T2 space so 

there exists two disjoint Sp-open sets  and  such that  

and , implies that  so by Lemma 2.8,  is 

Sp-open set and also it is Sp-closed set this implies that  is 

Sp-clopen containing  but not  which is a contradiction. Thus 

the intersection of all Sp-clopen sets containing  is . 

(2)  (3). Let  be a finite number of distinct 

points of , then by (2),   is Sp-clopen set and 

 for . Since , for  and 

, so there exists an Sp-clopen set  such that  and 

 for  , ( ) implies that , where 

 is also Sp-clopen set and . Therefore  

is Sp-open set containing , that is for each  there exist pair-

wise disjoint Sp-open sets  for  ( ). 

(3)  (1). Obvious 

 

Lemma 3.29: Let  and  be two spaces and  be a 

product space. If  SpO( ) and  SpO( ), then  

 SpO( ). 

Proof: Let  SpO( ) and  SpO( ) implies that  

SO( ) and  SO( ), then by Theorem 2.14,  

SO( ). And now let , then  and 

, but  SpO( ) and  SpO( ) so there exists pre-

closed sets   PC( ) and               PC( ) such that 

 and   implies that 

 and  is preclosed set in the 

product space  because by Theorem 2.15,  

( ) ( ) = ( ). Thus 

 SpO( ). 

 

Theorem 3.30: Let  be any finite family of 
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spaces. If  is an Sp-T2 space for each , then the 

product space  is Sp-T2 . 

Proof: Let  and  be any two 

distinct points in , then  for some . 

Suppose that  and since  is Sp-T2 space for each 

 , so there exist two disjoint Sp-open sets  and  

in  such that  and  . Then by Lemma 3.29,  

 and  are Sp-open sets in  such 

that  ,  and 

 = . Hence 

 is Sp-T2 . 

 

Theorem 3.31: Let  be an open continuous function. If 

 is an Sp-T2 space, then the set   is an 

Sp-closed set in the product space . 

Proof: Let . It is enough to show 

 is an Sp-open set, so let , then 

. But  and  is Sp-T2 space, so 

there exist two disjoint Sp-open sets  and  such that 

 and  implies that  and 

 and since  is open and continuous function, so by 

Theorem 2.13,  and  are disjoint Sp-open sets in , 

then by  Lemma 3.29,    is an Sp-open set in 

. Hence,   and 

therefore by Lemma 2.8,  is an Sp-open set in . 

This implies that  is an Sp-closed set in . 

 

Theorem 3.32: If  and  are s-continuous (or strongly semi-

continuous) functions on a space  into an Sp-T2 space , then 

the set of all point  in  such that  is closed set in 

. 

Proof: Let . It is enough to show that 

 is an open set in . So let , then  and 

, but  is Sp-T2 space, hence, there exist two dis-

joint Sp-open sets  and  in  such that  and 

. Since  and  are               s-continuous functions and 

,  are semi-open sets, so by Definition 2.3, we obtain that 

 and  are open sets containing . This implies 

that  and  is open set also. 

Now let  then we must show that 

. If possible, suppose that there exists one point  

but , then  . Therefore,   and since 

, then  and  . This implies that 

 and , but  so  which is 

contradiction. Thus  implies that  is a neigh-

borhood of each of it’s points,  so  is open set. Thus  is 

closed set in . 

 

Corollary 3.33: If  and  are s-continuous (or strongly semi-

continuous) functions on a space  into an Sp-T2 space  and 

the set of all points  in  such that  is dense in , 

then . 

Proof: By Theorem 3.32 ,  we have the set 
  is closed in , that is  = cl( )  and 

from the hypothesis  is dense implies that  cl( ) = . 
Therefore,   for all .  Hence . 
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